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Abstract Pandres has developed a theory in which the geometrical structure of a real four-
dimensional space-time is expressed by a real orthonormal tetrad, and the group of diffeo-
morphisms is replaced by a larger group called the conservation group. This paper extends
the geometrical foundation for Pandres’ theory by developing an appropriate covariant deriv-
ative which is covariant under all local Lorentz (frame) transformations, including complex
Lorentz transformations, as well as conservative transformations. After defining this ex-
tended covariant derivative, an appropriate Lagrangian and its resulting field equations are
derived. As in Pandres’ theory, these field equations result in a stress-energy tensor that
has terms which may automatically represent the electroweak field. Finally, the theory is
extended to include 2-spinors and 4-spinors.

Keywords Field theory · Transformation groups · Covariant derivatives · Lagrangians ·
Field equations · Spinors

1 Introduction

Previously a theory has been presented which exhibits many of the features required for
a unified field theory [5, 8, 9]. The main feature is invariance under a group of transfor-
mations that is larger than the diffeomorphism group. We will consider a 4-dimensional
space X4 which have local coordinates xμ (μ = 0,1,2,3) and regard the tetrad hi

μ (with
i = 0,1,2,3) as the contracted product of the field variables hI

μ and Li
I (defined below).

Under the enlarged group of transformations which is defined below, quantities such as the
tetrad may be path-dependent. The values of xi are considered to be inertial coordinates with
metric ηij ≡ diag{−1,1,1,1} (we use the Einstein summation convention throughout this
paper), and the metric tensor is defined by gμν = ηijh

i
μhj

ν . When hi
μ is a function of xμ, i.e.

E.L. Green (�)
Department of Mathematics and Computer Science, North Georgia College & State University,
Dahlonega, GA, USA
e-mail: egreen@ngcsu.edu

mailto:egreen@ngcsu.edu


324 Int J Theor Phys (2009) 48: 323–336

path-independent, we may interpret X4 as a 4-dimensional (pseudo-)Riemannian manifold
M4 with metric gμν . This is called the manifold interpretation.

A Riemannian manifold is invariant under diffeomorphisms which for xμ → xμ̄ satisfy
the property xᾱ

,ν,μ − xᾱ
,μ,ν = 0. In the tetrad formulation, it is also invariant under Lorentz

transformations Li

ī
which satisfy the condition ηīj̄ = ηijL

i

ī
L

j

j̄
= diag

{−1,1,1,1
}
. The in-

verse of Li

ī
will be denoted by Lī

i and hence L
j

ī
Lī

k = δ
j

k and Lk̄
i L

i

j̄
= δk̄

j̄
. Also h

μ

i is de-

fined by the requirement that at every point, h
μ

i hi
ν = δμ

ν . Under diffeomorphisms on xμ and
Lorentz transformations on xi , the Riemannian manifold generated by hī

μ̄ = hi
μLī

ix
μ

,μ̄ is the
same as that generated by hi

μ.

When the frame transformation, Lī
j from one Latin system to another is allowed to be

a function of position (local), it is well-known that the transformation from xi → xī is not
a diffeomorphism, i.e. the integrability condition Lī

j,k − Lī
k,j = 0 is not satisfied. The value

of xī will depend on the path in xi space and hence we cannot interpret the xī space as a
manifold. The special relativistic equation of a free particle is d2xi

ds2 = 0. Under local, non-

diffeomorphic, Lorentz transformations Lī
i , this implies that d2xī

ds2 = −Lī
iL

i

ī,j̄

dxī

ds
dxj̄

ds
and thus

we see that the xī system is non-inertial.
Therefore we have three spaces and convert between them using the field variables hI

μ

and Li
I , with hi

μ = Li
Ih

I
μ. Let Vi be a vector in the inertial space,

Li
I hI

μ

Vi −→ VI −→ Vμ

We call the xi space the inertial space, the xI space the internal space and the xμ the world
space. Analogous to the tetrad, we view Li

I as 4 internal vectors with inverse LI
i which

satisfies LI
i L

i
J = δI

J and LI
jL

i
I = δi

j . The fundamental fields are Li
I and hI

μ since hi
μ is

expressed by hi
μ = Li

Ih
I
μ. We will use capital Latin indices such as V I , hJ

μ, etc. to denote
the quantity in the internal system. Note that generally, Li

I,J − Li
J,I �= 0. We require that

η
IJ

= ηijL
i
IL

j

J = diag(−1,1,1,1). On the xI (internal) space, we allow local (nonconstant)

Lorentz transformations LÎ
J while on the xi (inertial) space we allow only global (constant)

Lorentz transformations, i.e. Lî
j,μ ≡ 0. We will use the convention that when L has a capital

subscript and a lowercase superscript or vice versa, that the L represents the field variable in
the given system. When both superscript and subscript are lowercase letters, L will represent
a global Lorentz (frame) transformation and when both superscript and subscript are capital
letters, L will generally represent a local Lorentz (frame) transformation. When coordinates
in the internal space xI are changed xI → xÎ , then, in the new system, hÎ

μ = hI
μLÎ

I and
Li

Î
= Li

IL
I

Î
. Effectively, the inertial space serves as a pregeometry upon which the richer

geometry of the internal space is founded and thence to the external (world) space geometry.
Since hI

μ = hi
μLI

i , then gμν = ηIJ hI
μhJ

ν = ηIJ hi
μLI

i h
j
νL

J
j = ηijh

i
μhj

ν . Because the met-
ric is unchanged, the field variables Li

I do not affect the geometry of the manifold that is
determined by hi

μ. If hi
μ,ν −hi

ν,μ = 0, then, in the manifold interpretation, X4 is a manifold
with a vanishing curvature tensor, but this does not imply that the internal space is flat, since
Li

I,J −Li
J,I may be nonzero. This may provide a framework for understanding the geometry

of the vacuum.
For transformations on X4, we consider a larger group of transformations which is called

the conservation group [8]. We say a transformation is conservative if it satisfies the weaker
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condition

xν
,ᾱ

(
xᾱ

,μ,ν − xᾱ
,ν,μ

) = 0. (1)

The group of conservative transformations contains the diffeomorphisms as a proper sub-
group. In the Riemannian manifold interpretation we regard xμ̄ as anholonomic when xᾱ

,μ

is non-diffeomorphic. We will use a semicolon to denote covariant differentiation with
Christoffel symbol �α

μν = 1
2 gασ (gσμ,ν + gσν,μ − gμν,σ ). Let Ṽ α be a vector density of

weight +1. The conservation group of transformations arises out of the requirement that
a conservation law of the form Ṽ α

;α = 0 is preserved, i.e. xα → xᾱ being conservative im-

plies that Ṽ ᾱ
;ᾱ = 0 as well. Dirac [4] has remarked that “further progress lies in the direction

of making our equations invariant under wider and still wider transformations.” We suggest
that this enlargement of the transformation group results in a theory which unifies gravity
with the other forces.

As noted above, the field variables LI
i generally do not satisfy the integrability condition:

LI
i,j − LI

j,i = 0. We define conservative Lorentz transformations by the requirement that

LI

Ī

(
LĪ

J,I − LĪ
I,J

) = 0. (2)

Since LĪ
I is a Lorentz transformation the determinant of LĪ

I is ±1 and hence the deriva-
tive of the determinant is zero. This implies that LI

Ī
LĪ

I,J = 0 and thus conservative Lorentz

transformations satisfy the condition LI

Ī
LĪ

J,I = 0. Thus, with use of the chain rule, we have

LĪ
J conservative ⇐⇒ LĪ

J,Ī
= 0. However, when we extend the group to complex Lorentz

transformations (2) must be used since the determinant of LI

Ī
is of the form eiθ(x) and hence

is not constant. Although the only diffeomorphic Lorentz transformations are global, there
exist local (position-dependent) conservative Lorentz transformations. (The results of this
paper do not depend on the concept of conservative Lorentz transformations on xI space,
but are included here for future reference.)

We also recall that the Ricci rotation coefficient given by γ α
μν = h α

i hi
μ;ν is used to define

the spin connection. However γ α
μν is not a scalar under local Lorentz transformations Li

ī

since

h α
i hi

μ;ν = h α
i

(
Li

ī
hī

μ

)
;ν

= h α
i Li

ī
hī

μ;ν + h α
i hī

μLi

ī, ν

= h α

ī
hī

μ;ν + h α
i hī

μLi

ī ,ν
.

In the manifold interpretation we see that the usual definition of γ α
μν results in a quantity

that is not invariant under local frame transformations.

Definition When hi
μ = Li

Ih
I
μ is the tetrad used to define a Riemannian manifold M, we

define the extended Ricci rotation coefficient

ϒα
μν ≡ h α

I hI
μ;ν + h α

i hI
μLi

I ,ν . (3)

When Li
I is constant, then the second term is zero and we have the usual definition, and

also, in this case, we have ϒα
μν = h α

i hi
μ;ν . Henceforth we will use the symbol ϒα

μν to mean
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the extended Ricci rotation coefficient. One may easily verify that ϒα
μν is a tensor under

diffeomorphisms and is a Lorentz scalar. We also have from this definition

ϒI
μν = LI

i ϒ
i
μν = LI

i h
i
μ;ν = hI

μ;ν + LI
i h

J
μLi

J ,ν .

2 The Stroke Covariant Derivative

We now define a derivative which is covariant under more general coordinate transforma-
tions on xμ as well as local frame transformations on xI . We will call this extended covariant
derivative the stroke covariant derivative will denote it by use of a vertical stroke. An ex-
tended covariant derivative is a standard device used in Gauge theory and in the standard
model [10]. We anticipate that our extended covariant derivative will be used to unify grav-
ity with the other forces. When acting on a contravariant vector, the stroke derivative is
defined by

V
μ

|ν ≡ V μ
,ν + V βh

μ

i hi
β,ν

≡ V μ
,ν + V β

(
h

μ

I hI
β,ν + hI

βh
μ

i Li
I,ν

)
. (4)

As stated above, xi is inertial, xI is internal, and the field variables are Li
I and hI

α . The
covariant derivative of the tetrad is hi

μ;ν = hi
μ,ν − hi

β�β
μν . Thus hi

μ,ν = hi
μ;ν + hi

β�β
μν and

hence h
μ

k hk
β,ν = h

μ

k hk
β;ν + �

μ

βν . Thus we have h
μ

I hI
β,ν + hI

βh
μ

j L
j

I,ν = �
μ

βν + ϒ
μ

βν , and so
the stroke derivative may be written

V
μ

|ν = V
μ

;ν + V βϒ
μ

βν (5)

where ϒ
μ

βν is the extended Ricci rotation coefficient defined in (3).
Many investigators have used an alternative covariant derivative with connection given

by Lα
μν = h α

i hi
μ,ν which is covariant under all coordinate transformations xμ → xμ̄, but

does not extend to local Lorentz transformations. In [11], the connection for V i is γ i
jk

which is not equal to our LI
jL

j

J,K . Kibble [6] introduces 24 fields A
ij

k with Aij
μ = −Aji

μ

through which a connection �α
μν is defined. This connection is non-symmetric in its lower

indices. Hehl et al. [7] use a connection given by �k
ij = {

k
ij

} − K k
ij , where K k

ij , the non-
Riemannian part of the connection, is called the contortion. Also, these authors do not use
the same Lagrangian as in our theory (usually they use

∫
R

√−g d4x ). Our connection is
formed directly from the tetrad hI

μ and Li
I which are considered to be the fundamental

fields. Because of the extended Ricci rotation coefficient, the stroke covariant derivative
defined by (4) and (5) is covariant with respect to a wider group of transformations than
these other extended covariant derivatives.

For covariant vectors one gets

Vμ|ν = Vμ,ν − Vβh
β

I hI
μ,ν − Vih

I
μLi

I,ν

= Vμ;ν − Vβϒβ
μν (6)

where, again, xi is assumed to be inertial and the extended Ricci rotation coefficient is used
in the second line. Using (5) and (6), one may verify the product rule holds: (UμVν)|α =



Int J Theor Phys (2009) 48: 323–336 327

U
μ

|αVν + UμVν|α . It is also easy to see that (UμVμ)|α = (UμVμ),α as would be expected.
Analogous formulas hold for tensors of higher rank. For example,

V α
β|μ = V α

β,μ + V
γ

βh α
I hI

γ,μ + V I
βh α

j L
j

I,μ − V α
γ h

γ

I hI
β,μ − V α

jh
I
βL

j

I,μ

= V α
β;μ + V

γ

βϒα
γμ − V α

γ ϒ
γ

βμ. (7)

We use (4) to define

V I
|ν ≡ hI

μV
μ

|ν = V I
,ν + V J LI

jL
j

J,ν, (8)

and using (6) we have

VI |ν ≡ h
μ

I Vμ|ν = VI,ν − VJ LJ
j L

j

I,ν . (9)

Using the formulas (4)–(9), one may take stroke covariant derivatives of quantities which
involve both Latin and Greek indices. Thus

V I
α|β = V I

α,β + V K
α LI

jL
j

K,β − V I
γ h

γ

KhK
α,β − V I

kh
K
αLk

K,β .

If we apply this result to the field variable hI
α , noting that hI

μh
μ

k = LI
k , the result is

hI
α|β = hI

α,β + hK
αLI

jL
j

K,β − hI
γ h

γ

KhK
α,β − LI

kh
K
αLk

K,β

= hI
α,β + hK

αLI
jL

j

K,β − hI
α,β − LI

kh
K
αLk

K,β

= 0. (10)

It is an easy matter to verify that under general coordinate transformations, V ᾱ
|ν = xᾱ

,μV
μ

|ν
and also under general Lorentz transformations that V Î

|α = LÎ
J V J

|α . Hence the stroke deriv-
ative of a vector or tensor is another vector or tensor with a rank increased by one.

We also define V i
|ν ≡ Li

IV
I
|ν and Vi|ν ≡ LI

i VI |ν . These definitions lead to

V i
|ν = V i

,ν and Vi|ν = Vi,ν, (11)

and we easily see that

Li
I |ν = 0.

As a check on the consistency of the stroke covariant derivative and the fact that the tetrad
is stroke covariant constant we consider whether η

MN |ν is zero by direct calculation. From
(6) with use of the product rule, we have

η
MN |ν = η

MN ,ν + η
KN

L
j

MLK
j,ν + η

MK
L

j

NLK
j,ν .

Now η
MN ,ν = 0. Using LJ

j = η
JK

ηjkL
k
K , we see that the second term reduces to the negative

of the third term:

η
KN

L
j

MLK
j,ν = −η

KN
L

j

M,νL
K
j = −η

KN

(
ηij η

MI
LI

i

)
,ν
η

KL

ηjkL
k
L

= −η
KN

ηijη
MI

η
KL

ηjkL
k
LLI

i,ν

= −δL
Nδi

kηMI
Lk

LLI
j,ν

= −η
MI

Li
NLI

i,ν
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and hence

η
MN |ν = 0.

Let Ṽ α be a vector density of weight +1 which may be constructed by multiplying a vector
V α by h = √−g, the determinant of hi

μ. Since gμν;α = 0 , then h ;α = 0 . It is also well

known that Ṽ α
;α = Ṽ α

,α . Also hi
μ|ν = 0 implies that Ṽ α

|α = (hV )α
|α = hV α

|α , and hence one
may obtain the following rule for the stroke covariant divergence of vector density of weight
+1:

Ṽ α
|α = Ṽ α

,α + Ṽ βϒα
βα. (12)

Definition The curvature vector (see [8, 9]) is given by

Cμ ≡ ϒα
μα (13a)

The derivative of h is given by h,α = hh
β

k hk
β,α . Since the extended Ricci rotation coefficient

is used, this is an extension of Pandres definition, but as its value is the same in the inertial
coordinates, xi , no confusion will arise by using the same symbol, Cμ. Using this and the
properties of covariant derivatives and the extended Ricci rotation coefficient one finds that

Cμ = h α
I hI

μ;α + hI
μLi

I,i

= h α
i

(
hi

μ,α − hi
α,μ

)

= h α
I

(
hI

μ,α − hI
α,μ

) + hI
μLJ

j

(
L

j

I,J − L
j

J,I

)
(13b)

and

Ci = −h−1
(
hh α

i

)
,α

,

CI = −h−1
(
hh α

I

)
,α

+ Li
I,i , (13c)

CI = −H−1
(
HH α

I

)
,α

+ �
(
�−1�i

I

)
,i

where the last line, listed here for easy reference, will be explained in the next section. It is
easy to verify that CI transforms as a vector under all differentiable Lorentz transformations
on the Latin indices, i.e. CĪ = LI

Ī
CI , provided Li

Ī
is differentiable. However, for Cα to

transform as a vector under changes of coordinates, xα → xᾱ , the transformation must be
conservative, i.e.

Cᾱ = xα
,ᾱCα ⇐⇒ xν

,ᾱ

(
xᾱ

,μ,ν − xᾱ
,ν,μ

) = 0.

3 Complex Lorentz Transformations. Complexification of the Tetrad

We consider allowing the hI
μ and LI

i to be complex. We will denote complex hI
μ by HI

μ and
complex LI

i by �I
i . Note that hi

μ remains real and thus gμν remains real. When the Lorentz

group is extended to complex values, we will denote the transformation coefficients by �Ī
I .

There are two possible ways of extending (see [2]), one in which ηÎ Ĵ = ηIJ �I

Î
�J

Ĵ
, but we
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extend the Lorentz group via the second possibility, i.e.,

ηÎ Ĵ = ηIJ �I

Î
�J

Ĵ
(14)

where ηÎ Ĵ = ηIJ = diag(−1,1,1,1) and a bar over a quantity indicates its complex conju-

gate. Since ηÎ Ĵ is real then ηÎ Ĵ = ηÎ Ĵ = ηIJ �I

Î
�J

Ĵ
, and we see that �I

Î
is also a Lorentz

transformation.
As before, we denote the inverse of �I

i as �i
I and convert between the xi system and the

xI system as usual, e.g. V I = V i�I
i and V i = V I�i

I . We also note that �I
i , the complex

conjugate of �I
i is also used to convert between the xi and xI system and the inverse is the

complex conjugate of �i
I , i.e. �I

i �i
J = δI

J and �I
j �i

I = δi
j . Let VI ≡ Vi�

i
I , and V I ≡ V i�I

i .

Then VI = Vi�
i
I and V I = V i�I

i . Similar rules apply for tensors. For the complex tetrad

HI
α , one finds that HI

α = �I
i h

i
α has inverse H α

I = h α
i �i

I and that HI
α = �I

i h
i
α has inverse

H α
I = h α

i �i
I . Note that general complexification leads to the condition that gνμ = gμν , but

because the xi and xμ spaces remain real in our construction, gμν remains real and hence
remains symmetric.

The determinant of HI
α will be denoted by H . We also define � ≡ det(�i

I ) and thus
h = H�. When inversions are excluded, and xI is real, then � = 1, and thus h = H ; when
the �i

I is non-real, then � = eiθ and hence h = Heiθ , where generally θ is a function of
position θ(x). These comments explain the last line of equations (13d).

When raising or lowering indices, complex conjugation must be used. One finds that
V I = ηIJ VJ and VI = ηIJ V J . Thus V IVI = ηIJ VJ VI = V I VI . One also finds that HI

α =
ηIJ gαβH

β

J . The definition for the extended Ricci rotation coefficient is ϒα
μν = H α

I HI
μ;ν +

H α
i HI

μ�i
I,ν , and the curvature vector, CI , is given by (13d). These quantities are invariant

under local Lorentz transformations and conservative transformations on Greek indices. The
stroke derivative is invariant under local complex frame transformations.

There are a couple of reasons for extending the group of transformations to include the
complex Lorentz transformations. It is well known [2] that the complex Lorentz group which
satisfies (14) contains SU(3) as a proper subgroup and that complex quantities are required
for SU(3). The complex Lorentz group, Λ, has 16 parameters. Also, the inclusion of spinors
and the spinor connection imply that complex Lorentz transformations should be included.

4 The Field Lagrangian

We know that in general relativity we have the property that for a vector density of
weight +1, Ṽ α

;α ≡ Ṽ α
,α . Thus an appropriate measure of the new geometry should be

Ṽ α
|α − Ṽ α

,α = Ṽ αCα. (15)

The line of reasoning that leads to this conclusion is as follows. In flat space with a con-
tinuously twice-differentiable vector V α , we have V α

,μ,ν − V α
,ν,μ = 0. Upon replacing the

ordinary derivatives by covariant derivative we use V α
;μ;ν − V α

;ν;μ = −V βRα
βμν to measure

the non-flatness of the corresponding Riemannian geometry. The curvature tensor, Rα
βμν ,

transforms as a tensor under diffeomorphisms. In a similar way, a space is conservatively flat
with respect to the conservation group when Ṽ α

;α − Ṽ α
,α = 0 and hence, after replacing the

covariant derivative with the stroke covariant derivative, the non-flatness of the conservation
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geometry is measured by (15). The quantity Cμ transforms as a vector under conservative
transformations and CI transforms as a vector under all differentiable Lorentz transforma-
tions. We note that there exists a conservative transformation between xα and xα̂ such that
gα̂β̂ = diag(−1,1,1,1) if and only if Cμ = 0 [8].

A suitable field Lagrangian will be a scalar which is constructed from Cμ. Thus a suitable
field Lagrangian is given by

L =
∫

CαCαhd4x (16)

where h = √−g is the determinant of the tetrad hi
α . We also have L = ∫

CiCi h d4x and
L = ∫

CICI H� d4x. The Riemann tensor is given by Rα
βμν = h α

i (hi
β;μ;ν − hi

β;ν;μ). Us-
ing (3) one finds that the Riemann tensor, the Ricci tensor and the Ricci scalar are given
by

Rα
βμν = ϒα

βμ;ν − ϒα
βν;μ + ϒα

σνϒ
σ
βμ − ϒα

σμϒσ
βν + h α

I hi
β(�I

i,μ,ν − �I
i,ν,μ),

Rμν = Cμ;ν − ϒα
μν;α + ϒα

σνϒ
σ
μα − ϒα

μνCα + h α
I hi

μ(�I
i,α,ν − �I

i,να), (17)

R = 2Cα
;α + CαCα − ϒαβνϒανβ + ηijh ν

j h α
I (�I

i,α,ν − �I
i,ν,α).

Thus one finds that (see [5])

CαCα = R + ϒαβνϒανβ − 2Cα
;α − ηijh ν

j h α
I (�I

i,α,ν − �I
i,ν,α). (18)

The additional terms are suggestive of non-gravitational interactions.
Setting δL = 0 leads to field equations. The fields that will be varied are HI

α and �i
I .

The requirement that ηIJ = diag(−1,1,1,1) and the requirement that hi
μ = HI

μ�i
I be real

will not be imposed at the outset by using Lagrange multipliers. Nevertheless the resulting
field equations will have solutions with these properties and hence these constraints do not
affect the variational problem. Now,

δ(CICIH�) = (CICI )�δH + (CICI )Hδ� + 2H�CIδCI .

Thus, from the formulas

δH = (−H HK
ν )δH ν

K

and

δ� = ��J
j δ�

j

J

and using (13d) we easily find that

δCI = −H−1HK
ν (HH α

I ),α δH ν
K − H−1(δ(HH α

I )),α + ��J
j (�−1�i

I ),iδ�
j

J

+ �(δ(�−1�i
I )),i .

When these results are used and an integration by parts is performed, one obtains

δ(CICIH�) = −2�CI(HH α
I ),αH

K
ν δH ν

K + 2(�CI ),αδ(HH α
I )

+ 2H�2CI (�−1�i
I ),i�

J
j δ�

j

J − 2(H�2CIH α
i ),αδ(�

−1�i
I )

− H�CICIH
K
ν δH ν

K + H�CICI�
J
j δ�

j

J ,
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where the boundary terms have been discarded since δ(Hν
K) = 0 and δ(�i

I ) = 0 on the
boundary. After straightforward use of the product rule and chain rule, one obtains

δ(CICIH�) = 2H�

(
1

2
CICIH

K
ν − CI�i

I,iH
K
ν + �J

j �
j

J,νC
K + CK

,ν − CI
,IH

K
ν

)
δH ν

K

+ 2H�

(
CI�

(
�−1�i

I

)
,i
�J

j − 2�K
k �k

K,jC
J + 2�K

k �k
K,IC

I�J
j

− CJ
,j + CI

,I�
J
j + CjC

J − 1

2
CICI�

J
j

)
δ�

j

J . (19)

Since h = H� must be nonzero and since δHν
K is arbitrary in the region of integration,

δL = 0 implies that the expression in the first parenthesis in (19) must be zero. Multiplying
this expression by H ν

L one obtains

1

2
CICI δ

K
L − CI�i

I,iδ
K
L + �J

j �
j

J,LCK + CK
,L − CI

,I δ
K
L = 0. (20)

The trace of this equation implies that

2CICI − 4CI�i
I,i + CI�J

j �
j

J,I − 3CI
,I = 0. (21)

Similarly the expression in the second parenthesis of (19) must be zero also. Multiplying
this expression by �

j

L one finds that

δJ
LCI�i

I,i + δJ
LCI�K

k �k
K,I − 2�K

k �k
K,LCJ − CJ

,L + δJ
LCI

,I + CJ CL − 1

2
δJ
LCICI = 0. (22)

The trace of this equation yields

CICI − 4CI�i
I,i − 2CI�J

j �
j

J,I − 3CI
,I = 0 (23)

and hence subtracting (23) from (21) gives CI�J
j �

j

J,I = − 1
3 CICI . Also multiplying (21)

by 2 and adding to (23) yields CI�i
I,i = 5

12 CICI − 3
4CI

,I . After inserting these formulae
into (20) and (22), one obtains

1

12
δK
L CICI − 1

4
δK
L CI

,I + �J
j �

j

J,LCK + CK
,L = 0

and

− 5

12
δK
L CICI + 1

4
δK
L CI

,I − 2�J
j �

j

J,LCK − CK
,L + CKCL = 0.

The sum of these two equations yields

CKCL − �J
j �

j

J,LCK = 1

3
δK
L CICI .

Now since � is the determinant of a complex Lorentz transformation, � = eiθ and thus
�J

j �
j

J,K = �,K

�
= i θ,K . Thus

CKCL − i θ,LCK = 1

3
δK
L CICI . (24)
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Now multiply (24) by CK and sum over K . Assume that CKCK �= 0. Then this im-
plies that CL − iθ,L = 1

3CL and hence CL = 3
2 iθ,L. Substituting this into (24) leads to

CKCK = 0 which contradicts our assumption. Thus we see that our field equations imply
that CKCK = 0.

From (24), we now see that CK(CL − iθ,L) = 0. Now assume that CK �= 0 and substitute
CL = iθ,L into (20). Then when K �= L, this implies that iθ

,K
,L = θ ,Kθ,L. But since θ is real

then θ ,Kθ ,L = 0 when K �= L. Thus at most one of the θ,L is nonzero, but then CKCK = 0
would imply that all are zero, contradicting the assumption that CK �= 0.

Hence the field equations imply that CI = 0 and since Cα = CIh
I
α , we have

Cα = 0. (25)

There are several examples of solutions to the field equations (25). The first example is
given by hi

μ = δi
μ + δi

0δ
2
μx1, where x1 is a Greek coordinate value, (see [8]), and results in a

Ricci scalar value of R = 1
2 . This is equivalent to the pair:

hI
μ = δI

μ + δI
0δ

2
μx1 and Li

I = δi
I .

A second example is given by

h
μ

i = δ
μ

0 δ0
i + δ

μ

3 δ3
i + (δ

μ

1 δ1
i + δ

μ

2 δ2
i ) cosx3 + (δ

μ

2 δ1
i − δ

μ

1 δ2
i ) sinx3, (26)

where x3 is a Greek coordinate. For (26), gμν = diag(−1,1,1,1) and hence Rα
βμν = 0, but

ϒα
μν �= 0. A third example is a spherically symmetric solution of the field equations. Let

f (r) be a positive differentiable function of r = √
(x1)2 + (x2)2 + (x3)2. Then the tetrad

given by

hi
μ = δi

0δ
0
μ

√
f (r) + 1

4
√

f (r)
(δi

1δ
1
μ + δi

2δ
2
μ + δi

3δ
3
μ) (27)

yields Cμ = 0 and hence is a solution of the field equations. The metric, in line element
form, is given by

ds2 = −f (r)dt2 + 1√
f (r)

dr2 + r2

√
f (r)

dθ2 + r2 sin2 θ√
f (r)

dφ2, (28)

and both Rα
βμν and ϒα

μν are nonzero.
Using the Einstein tensor Gμν = Rμν − 1

2 gμνR, the field equations (25) and symmetrizing
(so that Gμν = Gνμ) we find that

Gμν = −1

2

(
ϒα

μν;α + ϒα
νμ;α

) + 1

2

(
ϒα

σνϒ
σ
μα + ϒα

σμϒσ
να

) + 1

2
gμνϒ

αβσ ϒασβ

+ 1

2

(
h α

I hi
μ(�I

i,α,ν − �I
i,ν,α) + h α

I hi
ν(�

I
i,α,μ − �I

i,μ,α)
)

− 1

2
gμνη

ijh σ
j h α

I (�I
i,α,σ − �I

i,σ,α). (29)

These terms on the right suggest that, when interpreted in Riemannian geometry, this new
geometry may automatically produce an appropriate stress energy tensor.
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5 Inclusion of Spinors. The Spin Connection

The fundamental constant spin tensors, σ iȧ
b , are given as follows [1, 3].

σ 0ȧ
b = 1√

2

[
0 1

−1 0

]
, σ 1ȧ

b = 1√
2

[−1 0
0 1

]
,

(30)

σ 2ȧ
b = 1√

2

[
i 0
0 i

]
, σ 3ȧ

b = 1√
2

[
0 1
1 0

]
.

We typically will use Latin indices a through f for spin indices (first index refers to the row
and the second index refers to the column), and σ iȧb is defined by σ iȧb = −σ iċ

d E db and also
σ i

ȧb = −Eȧċσ
iċ
b , where the spin metric is given by

E ab = Eab = E ȧḃ = Eȧḃ =
[

0 1
−1 0

]
. (31)

Note that EEE is antisymmetric. When we use matrix multiplication to aid in the computation
process, we lower indices via a sum on adjacent indices with the matrix for E afterward
(or sum on adjacent indices with the matrix for −E before the spinor). Similarly, when we
use matrix multiplication in raising indices, we sum on adjacent indices with the matrix for
E before (or sum on adjacent indices with the matrix for −E afterward). Basically, when
raising or lowering spinor indices, the summed indices should be adjacent and the sign is +
for ↘ and − for ↗. Useful relations between the σ i ’s are:

σ i
ȧbσ

ȧb
j = −δi

j , σ i
ȧbσ

ċd
i = −δċ

ȧδ
d
b and σ ia

ċσ
j ċ

b + σ
ja

ċσ
iċ
b = ηij δa

b .

When the meaning is clear we will suppress the spinor indices, for example σ i and E .
Generally, for second rank spinors (with 2 × 2 matrix representation) such as Ma

c , we
have EabM

a
cM

b
d = det(M)Ecd . Thus, if Aa

c has determinant +1, then EabA
a
cA

b
d = Ecd , i.e.

the metric is preserved. We will call these Aa
b spin transformations and they are elements

of SL(2,C). The real Lorentz group is a 6 parameter group as is SL(2,C). As is usual
in the tetrad formalism, the fundamental spin tensors are kept constant by coordinating a
spin transformation, Aa

b̂
∈ SL(2,C), with the Lorentz transformation Li

ĵ
. Since LI

i are field

variables, these induce field variables AA
a . This is because we keep σ IȦ

B identical to σ iȧ
b by

coordinating AA
a with the field variables LI

i . As noted above, we only allow constant (global)
Lorentz transformations, Li

j̄
, on the xi (inertial) space and hence we only allow constant Aa

b̂

on the corresponding inertial spinor space. On the internal space, xI and its corresponding
spinor space, we allow nonconstant (local) Lorentz transformations and nonconstant (local)
spin transformations.

Now there is a 1–1 mapping from vectors V i to rank 2 spinors V ȧb via (31). Specifi-
cally V ȧb = σ ȧb

i V i which via the relation σ i
ȧbσ

ȧb
j = −δi

j implies V i = −σ i
ȧbV

ȧb . Since
there is coordination between the field variables Li

I and the induced variables AA
a , we

also have V I = −σ I

ȦB
V ȦB and V ȦB = σ ȦB

I V I . Now, because of the constancy of the σ ’s,

σ i
ȧb,ν = 0 and σ I

ȦB,ν
= 0. From σ i

ȧb = σ I

ȦB
Li

IA
Ȧ
ȧ AB

b , one finds that σ I

ȦB
(Li

IA
Ȧ
ȧ AB

b ),ν = 0.

Thus σ I

ȦB
Li

I,ν = −σ I

ĊB
Li

IA
ȧ

Ȧ
AĊ

ȧ,ν − σ I

ȦC
Li

IA
a
AAC

a,ν . Substituting this into the equation

V I
|ν = (−σ I

ȦB
V ȦB) |ν = −σ I

ȦB
V ȦB

,ν − σJ

ȦB
V ȦBLI

jL
j

J,ν , we arrive at the spin form of the
stroke covariant derivative of V I ,

V I
|ν = −σ I

ȦB

(
V ȦB

,ν − V ĊBAȧ

Ċ
AȦ

ȧ ,ν − V ȦCAa
CAB

a ,ν

)
. (32)
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Let aμ be an arbitrary real vector. One notices that, as in the usual spinor connection, that
we may take the replacement Aa

BAC
a,ν → Aa

BAC
a,ν + iδC

Baμ which has no effect on (32). This
corresponds to the classical Gauge transformation (see [1]). Thus a consistent definition for
the stroke derivative of a spinor is given by

�A
|ν = �A

,ν − �B
(
Aa

BAA
a,ν + iδA

Baν

)
(32a)

and

�Ȧ
|ν = �Ȧ

,ν − �Ḃ
(
Aȧ

Ḃ
AȦ

ȧ,ν − iδȦ

Ḃ
aν

)
. (32b)

These definitions imply that σ I

ȦB|ν = 0.
We now consider the extension under parity from the 2-spinor to the 4-spinor. The indices

for a 4-spinor will run from 1 to 4 with indices (1, 2) corresponding to dotted 2-spinor indices
and indices (3, 4) corresponding to undotted 2-spinor indices. Let the n × n zero matrix be
denoted by 0n. Let the matrices for σ iȧ

b be briefly denoted by σσσ i , then (in the chiral form)
the Dirac matrices, γ ia

b are given by

γ i ≡ √
2

[
02 σσσ i

σσσ i 02

]

, (33)

where the σσσ i denotes the complex conjugate (i.e. is σ ia

ḃ
). One finds that

γ a
i cγ

c
j b + γ a

j cγ
c

i b = 2ηij δ
a
b , (34a)

or in matrix notation,

γiγj + γjγi = 2ηij I4, (34b)

where I4 represents the 4 × 4 identity matrix. When the signature of the metric is
diag(−1,1,1,1), the Klein-Gordon equation is (∂i∂i + m2)�b = 0 and the Dirac equa-
tion is given by (γ ia

b pi + mδa
b )�

b = 0. In inertial coordinates, the Dirac equation is
(iγ ka

b∂k + mδa
b )�

b = 0 and upon multiplying on the left by the operator iγ j ∂j , one finds
that the Dirac equation implies the Klein-Gordon equation.

The metric tensor for 4-dimensional spinors is given by

Eab ≡ δ1
aδ

2
b − δ2

aδ
1
b + δ3

aδ
4
b − δ4

aδ
3
b (35)

and E ab = Eab . Using (31) we have the matrix form

E4 ≡
[

E 02

02 E

]
.

Suppose that Ma
c has either of the following special forms:

Ma
c =

[
02 A2

B2 02

]
or Ma

c =
[
A2 02

02 B2

]

where A2 and B2 are 2 × 2 matrices with det(A) = det(B). Using (35), we see that
EabM

a
cM

b
d = det(A)Ecd . Hence we define spinor transformations for 4-spinors by

A
a

b̂
≡

[
A 02

02 A

]
(36)
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where A is the complex conjugate of A and both are elements of SL(2,C). We also see that
there is a mapping between vectors and second rank 4-spinors given by V a

b = 1
2 Viγ

i a
b with

inverse mapping given by V i = 1
2γ i b

aV
a
b . As with 2-spinors, there is coordination between

Lorentz transformations on the Latin indices and spin transformations so that the γ i remain
constant. Similarly, when the field variables Li

I are given, we require that γ IA
B remains

unchanged and hence we see that this induces the values of A
A
a . The correspondence is

exactly one-to-two, with A
A
a determined up to a sign. This implies that (γ IA

BA
a
AA

B
b Li

I ),ν =
0 and thus γ IA

B(Li
I A

a
AA

B
b ),ν = 0. From this we derive that γ JA

BLI
i L

i
J,ν = −γ IC

BA
A
a A

a
C,ν +

γ IA
CAC

a A
a
B,ν . Thus

V I
|ν =

(
1

2
γ IA

BV B
A

)

|ν
= 1

2
γ IA

B

(
V B

A,ν − V B
CA

C
a A

a
A,ν + V C

AA
B
a A

a
C,ν

)
. (37)

We note that, for arbitrary vector aν , the replacement A
B
a A

a
C,ν → A

B
a A

a
C,ν + iδB

Caν has no
effect on (37). Thus we define the stroke derivatives of 4-spinors by

�B
|ν ≡ �B

,ν + �C
(
A

B
a A

a
C,ν + iδB

Caν

) = (
∂ν + iaν

)
�B + �C

A
B
a A

a
C,ν (38)

and

�A|ν ≡ �A,ν − �C

(
A

C
a A

a
A,ν + iδC

Aaν

) = (
∂ν − iaν

)
�A − �CA

C
a A

a
A,ν . (39)

The definition for the stroke derivative of a 4-spinor implies that γ IA
B|ν = 0.

6 Concluding Remarks

We have established invertible transformations which convert between the following types

V AB (spinor)
↗ � ↘

V i ↔ V I ↔ V μ

↘ � ↗
V I (complex)

and the stroke covariant derivative of a vector or tensor quantity transforms in the appropriate
way.

Let � be a 4-spinor with components �A. Let Dμ represent the stroke covariant deriva-
tive operator. We conjecture that the full Lagrangian is given by

L = iα�γ μDμ� + CμCμh

= αi�
†
A(γ 0)A

B(γ μ)B
C�C

|μ + CμCμh (40)

where α is an arbitrary real constant and the stroke derivative is given by (38). This La-
grangian is invariant under all conservative coordinate transformations and all differentiable
frame transformations. If A

a
C is constant and if Cμ = 0, the Lagrangian reduces to that of

a free particle of spin 1/2. As the transformations allowed in this new geometry includes
local Lorentz transformations, local complex Lorentz transformations, local spin transfor-
mations and conservative transformations on Greek indices, we suggest that the geometry
has sufficient richness to describe the unification of gravitational, electroweak and strong
forces.
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